X11 Input Extension Porting Document

X Version 11, Release 5

Geor ge Sachs Hewlett-Packard

Notice

Copyright [0 1989, 1990, 1991 by Hewlett-Packard Company, and the Massachusetts Institute of Technol-
ogy.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all copies.
MIT and Hewlett-Packard make no representations about the suitability for any purpose of the information
in this document. It isprovided "asis' without express or implied warranty. This document is only a draft
standard of the MIT X Consortium and is therefore subject to change.

This document is intended to aid the process of integrating the X11 Input Extension into an X server.

Most of the functionality provided by the input extension is device- and implementation-independent, and
should require no changes. The functionality is implemented by routines that typically reside in the server
source tree directory extensions/server/xinput. This extension includes functions to enable and disable
input extension devices, select input, grab and focus those device, query and change key and button map-
pings, and others. The only input extension requirements for the device-dependent part of X are that the
input devices be correctly initialized and input events from those devices be correctly generated. Device-
dependent X is responsible for reading input data from the input device hardware and if necessary, refor-
matting it into X events.

The process of initializing input extension devices is similar to that used for the core devices, and is
described in the following sections. When multiple input devices are attached to X server, the choice of
which devices to initially use as the core X pointer and keyboard is left implementation-dependent. 1t is
also up to each implementation to decide whether all input devices will be opened by the server during its
initialization and kept open for the life of the server. The aternative isto open only the X keyboard and X
pointer during server initiaization, and open other input devices only when requested by a client to do so.
Either type of implementation is supported by the input extension.

Input extension events generated by the X server use the same 32-byte xEvent wire event as do core input
events. However, additional information must be sent for input extension devices, requiring that multiple
xEvents be generated each time data is received from an input extension device. These xEvents are com-
bined into a single client XEvent by the input extension library. A later section of this document describes
the format and generation of input extension events.

2. Initializing Extension Devices

Extension input devices are initidized in the same manner as the core X input devices. Device-
Independent X provides functions that can be called from DDX to initialize these devices. Which func-
tions are called and when will vary by implementation, and will depend on whether the implementation
opens all the input devices available to X when X isinitialized, or waits until a client requests that a device
be opened. In the simplest case, DDX will open all input devices as part of its initialization, when the Ini-
tinput routineis called.

2.1. Summary of Calling Sequence

X Input Extension Porting Document X11, Release 5

Device-Independent X | Device-Dependent X
I

Initlnput -------------- > | - do device-specific initialization

| - call AddinputDevice (deviceProc,AutoStart)
AddinputDevice |
- creates DevicelntRec |
- records deviceProc |
- adds new deviceto |
list of off_devices. |
sets dev->startup=AutoStart|
| - call oneof:
| - RegisterPointerDevice (X pointer)
| - processinputProc = ProcessPointerEvents
| - RegisterKeyboardDevice (X keyboard)
| - processinputProc = ProcessK eyboardEvents
| - RegisterOtherDevice (extension device)
| - processinputProc = ProcessOtherEvents
I
I
InitAndStartDevices ----- > | - callsdeviceProc with parameters
| (DEVICE_INIT, AutoStart)
sets dev->inited = return |
value from deviceProc |
I
| - indeviceProc, do one of:
| - cal InitPointerDeviceStruct (X pointer)
| - cal InitkeyboardDeviceStruct (X keybd)
| - init extension device by calling some of:
| - InitKeyClassDeviceStruct
| - InitButtonClassDeviceStruct
| - InitVauatorClassDeviceStruct
| - InitVauatorAxisStruct
| - InitFocusClassDeviceStruct
| - InitProximityClassDeviceStruct
| - InitKbdFeedbackClassDeviceStruct
| - InitPtrFeedbackClassDeviceStruct
| - InitLedFeedbackClassDeviceStruct
| - InitStringFeedbackClassDeviceStruct
| - InitintegerFeedbackClassDeviceStruct
| - InitBellFeedbackClassDeviceStruct
| - init device name and type by:
| - caling MakeAtom with one of the
| predefined names
| - caling AssignTypeAndName
I

I
for each device added |

by AddinputDevice, |

InitAndStartDevices |

calls EnableDevice if | - EnableDevice calls deviceProc with
dev->startup & | (DEVICE_ON, AutoStart)
dev->inited [

X Input Extension Porting Document X11, Release 5

If deviceProc returns | - core devices are now enabled, extension
Success, EnableDevice | devices are now available to be accessed
move the device from | through the input extension protocol
inputinfo.off_devices | requests.
to inputlnfo.devices |

2.2. Initialization Called From Initlnput

Initinput is the first DDX input entry point called during X server startup. This routine is responsible for
device- and implementation- specific initialization, and for calling AddInputDevice to create and initiaize
the DevicelntRec structure for each input device. AddinputDevice is passed the address of a procedure to
be called by the DIX routine InitAndStartDevices when input devices are enabled. This procedure is
expected to perform X initialization for the input device.

If the device isto be used as the X pointer, DDX should then call RegisterPointerDevice, passing the Devi-
celntRec pointer, to initialize the device as the X pointer.

If the device is to be used as the X keyboard, DDX should instead call RegisterKeyboardDevice to initial-
ize the device asthe X keyboard.

If the device is to be used as an extension device, DDX should instead call RegisterOtherDevice, passing
the Devicel ntPtr returned by AddinputDevice.

A sample Initlnput implementation is shown below.

X Input Extension Porting Document X11, Release 5

Initlnput(argc,argv)

int i, numdevs, Readlnput();

DevicelntPtr dev;

LocalDevice localdevgLOCAL_MAX_DEVS];
DeviceProc kbdproc, ptrproc, extproc;

/**

* Open the appropriate input devices, determine which are
* available, and choose an X pointer and X keyboard device

* in some implementation-dependent manner.
***/

open_input_devices (& numdevs, localdevs);

/**

* Register a WakeupHandler to handle input when it is generated.

***/

RegisterBlockAndWakeupHandlers (NoopDDA, Readinput, NULL);

/**

* Register the input devices with DIX.

***/

for (i=0; i<numdevs; i++)

{
if (localdevd[i].use == IsXKeyboard)
{
dev = AddInputDevice (kbdproc, TRUE);
RegisterK eyboardDevice (dev);
}
elseif (localdevqi].use == IsXPointer)
{
dev = AddInputDevice (ptrproc, TRUE);
RegisterPointerDevice (dev);
}
else
{
dev = AddInputDevice (extproc, FALSE);
RegisterOtherDevice (dev);
}
if (dev ==NULL)

FatalError ("Too many input devices.");
dev->devicePrivate = (pointer) &localdevd[i];
}

2.3. Initialization Called From InitAndStartDevices

After Initlnput has returned, InitAndStartDevicesisthe DIX routine that is called to enable input devices. It
calls the device control routine that was passed to AddInputDevice, with a mode value of DEVICE_INIT.
The action taken by the device control routine depends on how the device isto be used. If the deviceisto
be the X pointer, the device control routine should call InitPointerDeviceStruct to initializeit. If the device
is to be the X keyboard, the device control routine should call InitkeyboardDeviceStruct. Since input

X Input Extension Porting Document X11, Release 5

extension devices may support various combinations of keys, buttons, valuators, and feedbacks, each class
of input that it supports must be initialized. Entry points are defined by DIX to initialize each of the sup-
ported classes of input, and are described in the following sections.

A sample device control routine called from InitAndStartDevices is shown below.

X Input Extension Porting Document

Bool extproc (dev, mode)
DevicelntPtr dev;
int mode;

{
LocalDevice *localdev = (LocalDevice *) dev->devicePrivate;

switch (mode)
{
case DEVICE_INIT:
if (stremp(localdev->name, XI_TABLET) ==0)

{

/**

* This device reports proximity, has buttons,

* reports two axes of motion, and can be focused.

* |t also supports the same feedbacks as the X pointer
* (acceleration and threshold can be set).

**/

InitButtonClassDeviceStruct (dev, button_count, button_map);
InitValuatorClassDeviceStruct (dev, localdev->n_axes));
motionproc, MOTION_BUF_SIZE, Absolute);
for (i=0; i<localdev->n_axes; i++)
InitValuatorAxisStruct (dev, i, min_val, max_val,
resolution);
InitFocusClassDeviceStruct (dev);
InitProximityClassDeviceStruct (dev);
InitPtrFeedbackClassDeviceStruct (dev, p_control proc);

}
elseif (stremp(localdev->name, XI_BUTTONBOX) ==0)
{

/**

* This device has keys and LEDs, and can be focused.

**/

Initk eyClassDeviceStruct (dev, syms, modmap);

InitFocusClassDeviceStruct (dev);
InitL edFeedbackClassDeviceStruct (dev, ledcontrol);
}

elseif (stremp(localdev->name, XI_KNOBBOX) == 0)
{

/**

* This device reports motion.

* |t can be focused.
**/

InitValuatorClassDeviceStruct (dev, localdev->n_axes,);
motionproc, MOTION_BUF_SIZE, Absolute);
for (i=0; i<localdev->n_axes; i++)
InitValuatorAxisStruct (dev, i, min_val, max_val,
resolution);
InitFocusClassDeviceStruct (dev);

localdev->atom =
MakeAtom(local dev->name, strlen(localdev->name), FAL SE);

X11, Release 5

X Input Extension Porting Document X11, Release 5

AssignTypeAndName (dev, localdev->atom, localdev->name);
break;

case DEVICE_ON:
AddEnabledDevice (localdev->file_ds);
dev->on = TRUE;
break;

case DEVICE_OFF:
dev->on = FALSE;
RemoveEnabledDevice (localdev->file_ds);
break;

case DEVICE_CLOSE:
break;

}

}

The device control routine is called with a mode value of DEVICE_ON by the DIX routine EnableDevice,
which is called from InitAndStartDevices. When called with this mode, it should call AddEnabledDevice
to cause the server to begin checking for available input from this device.

>From InitAndStartDevices, EnableDevice is caled for al devices that have the "inited" and "startup”
fields in the DevicelntRec set to TRUE. The "inited" field is set by InitAndStartDevices to the value
returned by the deviceproc when called with a mode value of DEVICE_INIT. The "startup” field is set by
AddinputDevice to value of the second parameter (autoStart).

When the server is first initialized, it should only be checking for input from the core X keyboard and
pointer. One way to accomplish thisisto call AddinputDevice for the core X keyboard and pointer with an
autoStart value equal to TRUE, while calling AddinputDevice for input extension devices with an autoStart
value equal to FALSE. If thisisdone, EnableDevice will skip all input extension devices during server ini-
tidization. In this case, the OpenlnputDevice routine should set the "startup" field to TRUE when called
for input extension devices. This will cause ProcXOpenlnputDevice to call EnableDevice for those dev-
ices when a client first does an X OpenDevice request.

2.4. DIX Input Class Initialization Routines
DIX routines are defined to initialize each of the defined input classes. The defined classes are:
- KeyClass - the device has keys.
- ButtonClass - the device has buttons.
- VauatorClass - the device reports motion data or positional data.
- Proximitylass - the device reports proximity information.
- FocusClass - the device can be focused.
- FeedbackClass - the device supports some kind of feedback

DIX routines are provided to initialize the X pointer and keyboard, as in previous releases of X. During X
initialization, InitPointerDeviceStruct is called to initialize the X pointer, and InitKeyboardDeviceStruct is
called to initialize the X keyboard. There is no corresponding routine for extension input devices, since
they do not all support the same classes of input. Instead, DDX is responsible for the initialization of the
input classes supported by extension devices. A description of the routines provided by DIX to perform
that initialization follows.

2.4.1. InitkeyClassDeviceStruct

This function is provided to alocate and initialize a KeyClassRec, and should be called for extension dev-
ices that have keys. It is passed a pointer to the device, and pointers to arrays of keysyms and modifiers
reported by the device. It returns FALSE if the KeyClassRec could not be allocated, or if the maps for the
keysyms and and modifiers could not be allocated. Its parameters are:

X Input Extension Porting Document X11, Release 5

Bool

InitkeyClassDeviceStruct(dev, pKeySyms, pModifiers)
DevicelntPtr dev;
KeySymsPtr pKeySyms,
CARDS8 pModifierd[];

The DIX entry point InitkeyboardDeviceStruct calls this routine for the core X keyboard. It must be called
explicitly for extension devices that have keys.

2.4.2. InitButtonClassDeviceStruct

This function is provided to allocate and initialize a ButtonClassRec, and should be called for extension
devices that have buttons. It is passed a pointer to the device, the number of buttons supported, and a map
of the reported button codes. It returns FALSE if the ButtonClassRec could not be alocated. Its parame-
tersare:

Bool

InitButtonClassDeviceStruct(dev, numButtons, map)
register DevicelntPtr dev;
int numButtons;
CARDS8 *map;

The DIX entry point InitPointerDeviceStruct calls this routine for the core X pointer. It must be called
explicitly for extension devices that have buttons.

2.4.3. InitValuator ClassDeviceStruct

This function is provided to allocate and initialize a VValuatorClassRec, and should be called for extension
devices that have valuators. It is passed the number of axes of mation reported by the device, the address
of the motion history procedure for the device, the size of the motion history buffer, and the mode (Abso-
lute or Relative) of the device. It returns FALSE if the VauatorClassRec could not be allocated. Its
parameters are:

Bool
InitValuatorClassDeviceStruct(dev, numAxes, motionProc, numM otionEvents, mode)
DevicelntPtr dev;
int (*motionProc)();
int nUMAXes,
int numM otionEvents;
int mode;

The DIX entry point InitPointerDeviceStruct calls this routine for the core X pointer. It must be called
explicitly for extension devices that report motion.

2.4.4. InitValuator AxisStruct

This function is provided to initialize an X AxisInfoRec, and should be called for core and extension dev-
ices that have valuators. The space for the XAxislinfoRec is allocated by the InitValuatorClassDeviceStruct
function, but is not initialized.

InitValuatorAxisStruct should be called once for each axis of motion reported by the device. Each invoca-
tion should be passed the axis number (starting with 0), the minimum value for that axis, the maximum
value for that axis, and the resolution of the device in counts per meter. If the device reports relative
motion, 0 should be reported as the minimum and maximum values. InitValuatorAxisStruct has the fol-
lowing parameters:

X Input Extension Porting Document X11, Release 5

InitValuatorAxisStruct(dev, axnum, minval, maxval, resolution)
DevicelntPtr dev;
int axnum;
int minval;
int maxval;
int resolution;

This routine is not called by InitPointerDeviceStruct for the core X pointer. It must be called explicitly for
core and extension devices that report motion.

2.4.5. InitFocusClassDeviceStruct

This function is provided to allocate and initialize a FocusClassRec, and should be called for extension
devices that can be focused. It is passed a pointer to the device, and returns FALSE if the allocation fails.
It has the following parameter:

Bool
InitFocusClassDeviceStruct(dev)
DevicelntPtr dev;

The DIX entry point InitkeyboardDeviceStruct calls this routine for the core X keyboard. It must be called
explicitly for extension devices that can be focused. Whether or not a particular device can be focused is
left implementati on-dependent.

2.4.6. InitProximityClassDeviceStruct

This function is provided to allocate and initialize a ProximityClassRec, and should be called for extension
absolute pointing devices that report proximity. It is passed a pointer to the device, and returns FALSE if
the allocation fails. It hasthe following parameter:

Bool
InitProximityClassDeviceStruct(dev)
DevicelntPtr dev;

2.4.7. Initializing Feedbacks

2.4.7.1. InitKbdFeedbackClassDeviceStruct

This function is provided to allocate and initialize a KbdFeedbackClassRec, and may be called for exten-
sion devices that support some or al of the feedbacks that the core keyboard supports. It is passed a
pointer to the device, apointer to the procedure that sounds the bell, and a pointer to the device control pro-
cedure. It returns FALSE if the allocation fails, and has the following parameters:

Bool

I nitk bdFeedbackClassDeviceStruct(dev, bellProc, control Proc)
DevicelntPtr dev;
void (*bellProc)();
void (* control Proc)();

The DIX entry point InitkeyboardDeviceStruct calls this routine for the core X keyboard. It must be called
explicitly for extension devices that have the same feedbacks as a keyboard. Some feedbacks, such as
LEDs and bell, can be supported either with a KbdFeedbackClass or with BellFeedbackClass and L edFeed-
backClass feedbacks.

2.4.7.2. InitPtr Feedback ClassDeviceStruct

This function is provided to allocate and initialize a PtrFeedbackClassRec, and should be called for exten-
sion devices that alow the setting of acceleration and threshold. It is passed a pointer to the device, and a

X Input Extension Porting Document X11, Release 5

pointer to the device control procedure. It returns FALSE if the allocation fails, and has the following
parameters:

Bool

InitPtrFeedbackClassDeviceStruct(dev, control Proc)
DevicelntPtr dev;
void (* control Proc)();

The DIX entry point InitPointerDeviceStruct calls this routine for the core X pointer. It must be called
explicitly for extension devices that support the setting of acceleration and threshold.

2.4.7.3. InitLedFeedback ClassDeviceStruct

This function is provided to allocate and initialize a L edFeedbackClassRec, and should be called for exten-
sion devices that have LEDs. It is passed a pointer to the device, and a pointer to the device control pro-
cedure. It returns FALSE if the allocation fails, and has the following parameters:

Bool

InitL edFeedbackClassDeviceStruct(dev, control Proc)
DevicelntPtr dev;
void (* control Proc)();

Up to 32 LEDs per feedback can be supported, and a device may have multiple feedbacks of the same type.

2.4.7.4. |nitBellFeedback ClassDeviceStruct

Thisfunction is provided to allocate and initialize a BellFeedbackClassRec, and should be called for exten-
sion devices that have a bell. It is passed a pointer to the device, and a pointer to the device control pro-
cedure. It returns FALSE if the allocation fails, and has the following parameters:

Bool

InitBellFeedback ClassDeviceStruct(dev, bellProc, control Proc)
DevicelntPtr dev;
void (*bellProc)();
void (* control Proc)();

2.4.7.5. InitStringFeedback ClassDeviceStruct

This function is provided to allocate and initialize a StringFeedbackClassRec, and should be called for
extension devices that have a display upon which a string can be displayed. It is passed a pointer to the
device, and a pointer to the device control procedure. It returns FALSE if the alocation fails, and has the
following parameters:

Bool
InitStringFeedback ClassDeviceStruct(dev, control Proc, max_symbals,
num_symbols_supported, symbols)
DevicelntPtr dev;
void (* control Proc)();
int max_symbols:
int num_symbols_supported,;
KeySym *symbols;

2.4.7.6. InitInteger Feedback ClassDeviceStruct

This function is provided to alocate and initialize an IntegerFeedbackClassRec, and should be called for
extension devices that have a display upon which an integer can be displayed. It is passed a pointer to the
device, and a pointer to the device control procedure. It returns FALSE if the alocation fails, and has the
following parameters:

10

X Input Extension Porting Document X11, Release 5

Bool

InitIntegerFeedbackClassDeviceStruct(dev, control Proc)
DevicelntPtr dev;
void (* control Proc)();

2.5. Initializing The Device Name And Type

The device name and type can be initialized by calling AssignTypeAndName with the following parame-
ters:

void

AssignTypeAndName(dev, type, name)
DevicelntPtr dev;
Atom type;
char *name;

This will alocate space for the device name and copy the name that was passed. The device type can be
obtained by calling MakeAtom with one of the names defined for input devices. MakeAtom has the fol-
lowing parameters:

Atom

MakeAtom(name, len, makeit)
char *name;
intlen;
Bool makeit;

Since the atom was already made when the input extension was initialized, the value of makeit should be
FALSE;

3. Closing Extension Devices

The DisableDevice entry point is provided by DIX to disable input devices. It calls the device control rou-
tine for the specified device with a mode value of DEVICE_OFF. The device control routine should call
RemoveEnabledDevice to stop the server from checking for input from that device.

DisableDevice is not called by any input extension routines. It can be called from the CloselnputDevice
routine, which is called by ProcXCloseDevice when a client makes an XCloseDevice request. If Disa-
bleDevice is called, it should only be called when the last client using the extension device has terminated
or called XCloseDevice.

4. Implementation-Dependent Routines

Severa input extension protocol requests have implementation-dependent entry points. Default routines
are defined for these entry points and contained in the source file extensions/server/xinput/xstubs.c. Some
implementations may be able to use the default routines without change. The following sections describe
each of these routines.

4.1. AddOtherInputDevices

AddOtherlnputDevice is called from ProcXListinputDevices as a result of an XListInputDevices protocol
request. It may be needed by implementations that do not open extension input devices until requested to
do so by some client. These implementations may not initialize all devices when the X server starts up,
because some of those devices may be in use. Since the XListInputDevices function only lists those dev-
ices that have been initialized, AddOtherlnputDevices is called to give DDX a chance to initialize any pre-
viously unavailable input devices.

A sample AddOtherInputDevices routine might look like the following:

11

X Input Extension Porting Document X11, Release 5

void
AddOtherInputDevices ()
{
DevicelntPtr dev;
inti;

for (i=0; i<MAX_DEVICES; i++)
{
if ('local_devli].initialized & & available(local_dev[i]))
{
dev = (DevicelntPtr) AddinputDevice (local_dev[i].deviceProc, TRUE);
dev->public.devicePrivate = local_dev[i];
RegisterOtherDevice (dev);
dev->inited = ((* dev->deviceProc)(dev, DEVICE_INIT) == Success);
}
}
}

The default AddOtherlnputDevices routine in xstubs.c does nothing. If al input extension devices are ini-
tialized when the server starts up, it can be left as anull routine.

4.2. OpenlnputDevice

Some X server implementations open all input devices when the server isinitialized and never close them.
Other implementations may open only the X pointer and keyboard devices during server initialization, and
open other input devices only when some client makes an XOpenDevice request. This entry point is for
the latter type of implementation.

If the physical device is not already open, it can be done in this routine. In this case, the server must keep
track of the fact that one or more clients have the device open, and physically close it when the last client
that has it open makes an X CloseDevice request.

The default implementation is to do nothing (assume all input devices are opened during X server initiali-
zation and kept open).

4.3. CloselnputDevice

Some implementations may close an input device when the last client using that device requests that it be
closed, or terminates. CloselnputDevice is called from ProcXCloseDevice when a client makes an
XCloseDevice protocol request.

The default implementation is to do nothing (assume all input devices are opened during X server initiali-
zation and kept open).

4.4. SetDeviceM ode

Some implementations support input devices that can report either absolute positional data or relative
motion. The XSetDeviceMode protocol request is provided to allow DDX to change the current mode of
such a device.

The default implementation is to always return a BadMatch error. |f the implementation does not support
any input devices that are capable of reporting both relative motion and absolute position information, the
default implementation may be left unchanged.

4.5. SetDeviceValuators

Some implementations support input devices that allow their valuators to be set to an initial value. The
XSetDeviceVauators protocol request is provided to allow DDX to set the valuators of such adevice.

12

X Input Extension Porting Document X11, Release 5

The default implementation is to always return a BadMatch error. If the implementation does not support
any input devices that are allow their valuators to be set, the default implementation may be left
unchanged.

4.6. ChangePointer Device

The XChangePointerDevice protocol request is provided to change which device is used as the X pointer.
Some implementations may maintain information specific to the X pointer in the private data structure
pointed to by the DevicelntRec. ChangePointerDevice is called to allow such implementations to move
that information to the new pointer device. The current location of the X cursor is an example of the type
of information that might be affected.

The DevicelntRec structure that describes the X pointer device does not contain a FocusRec. If the device
that has been made into the new X pointer was previously a device that could be focused, ProcX-
ChangePointerDevice will free the FocusRec associated with that device.

If the server implementation desires to alow clients to focus the old pointer device (which is now accessi-
ble through the input extension), it should call InitFocusClassDeviceStruct for the old pointer device.

The X ChangePointerDevice protocol request also allows the client to choose which axes of the new pointer
device are used to move the X cursor in the X- and Y- directions. If the axes are different than the default
ones, the server implementation should record that fact.

If the server implementation supports input devices with valuators that are not allowed to be used as the X
pointer, they should be screened out by thisroutine and a BadDevice error returned.

The default implementation is to do nothing.

4.7. ChangeK eyboardDevice

The XChangeK eyboardDevice protocol request is provided to change which device is used as the X key-
board. Some implementations may maintain information specific to the X keyboard in the private data
structure pointed to by the DevicelntRec. ChangeKeyboardDevice is called to allow such implementations
to move that information to the new keyboard device.

The X keyboard device can be focused, and the DevicelntRec that describes that device has a FocusRec. If
the device that has been made into the new X keyboard did not previously have a FocusRec, ProcX-
ChangeK eyboardDevice will allocate one for it.

If the implementation does not want clients to be able to focus the old X keyboard (which has how become
available as an input extension device) it should call DeleteFocusClassDeviceStruct to free the FocusRec.

If the implementation supports input devices with keys that are not allowed to be used as the X keyboard,
they should be checked for here, and a BadDevice error returned.

The default implementation is to do nothing.

5. Input Extension Events

Events accessed through the input extension are analogous to the core input events, but have different event
types. They are of types DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButton-
Release, DeviceDeviceM otionNotify, DeviceProximityln, DeviceProximityOut, and DeviceValuator.
These event types are not constants. Instead, they are external integers defined by the input extension.
Their actual values will depend on which extensions are supported by a server, and the order in which they
areinitialized.

The data structures that define these events are defined in the file extensions/include/XIproto.h. Other
input extension constants needed by DDX are defined in the file extensions/include/X1 .h.

Some events defined by the input extension contain more information than can be contained in the 32-byte
xEvent data structure. To send this information to clients, DDX must generate two or more 32-byte wire
events. The following sections describe the contents of these events.

13

X Input Extension Porting Document X11, Release 5

5.1. Device Key Events

DeviceK eyPresss events contain all the information that is contained in a core KeyPress event, and also
the following additional information:

- deviceid - theidentifier of the device that generated the event.

- device _state - the state of any modifiers on the device that generated the event
- num_vauators - the number of valuators reported in this event.

- first_vauator - thefirst valuator reported in this event.

- valuator0 through valuator5 - the values of the valuators.

In order to pass this information to the input extension library, two 32-byte wire events must be generated
by DDX. The first has an event type of DeviceKeyPress, and the second has an event type of Devi-
ceValuator.

The following code fragment shows how the two wire events could be initialized:

extern int DeviceKeyPress;

DevicelntPtr dev;

xEvent xE[2];

CARDS8 id, num_valuators,

INT16 X, y, pointerx, pointery;

Time timestamp;

deviceKeyButtonPointer *xev = (deviceKeyButtonPointer *) xE;
deviceVauator *xv;

xev->type = DeviceKeyPress; /* defined by input extension */
xev->detail = keycode; I* key pressed on this device */
xev->time = timestamp; [* same asfor coreevents */
Xev->rootX = pointerx; [* x location of core pointer */
xev->rootY = pointery; [* y location of core pointer */

/**/
I* */

/* The following field does not exist for core input events. */

[* It contains the device id for the device that generated the */

[* event, and also indicates whether more than one 32-byte wire */

[* event is being sent. */

I* */

/**/

xev->deviceid = dev->id | MORE_EVENTS; [* sending more than 1*/

/**/

[* Fieldsin the second 32-byte wire event: */
/**/

xv = (deviceValuator *) ++xev;

xv->type = DeviceValuator; [* event type of second event */
xv->deviceid = dev->id, /* id of this device */
Xv->num_valuators = 0; /* no valuators being sent */
xv->device_state =0; /* will befilledinby DIX */

14

X Input Extension Porting Document X11, Release 5

5.2. Device Button Events

DeviceButton events contain all the information that is contained in a core button event, and also the same
additional information that a DeviceK ey event contains.

5.3. Device Motion Events

DeviceMotion events contain al the information that is contained in a core motion event, and also addi-
tional valuator information. At least two wire events are required to contain this information. The follow-
ing code fragment shows how the two wire events could be initialized:

extern int DeviceMotionNotify;

DevicelntPtr dev;

xEvent xE[2];

CARDS8 id, num_valuators;

INT16 X, y, pointerx, pointery;

Time timestamp;

deviceK eyButtonPointer *xev = (deviceKeyButtonPointer *) xE;
deviceVauator *xv;

xev->type = DeviceMotionNotify; /* defined by input extension */

xev->detail = keycode; * key pressed on this device */
Xev->time = timestamp; [* same asfor coreevents */
Xev->rootX = pointerx; [* x location of core pointer */
Xev->rootY = pointery; [* y location of core pointer */

/**/
I* */

/* The following field does not exist for core input events. */

[* It contains the device id for the device that generated the */

[* event, and also indicates whether more than one 32-byte wire */

[* event isbeing sent. */

I* */

/**/

xev->deviceid = dev->id | MORE_EVENTS; [* sending more than 1*/

/**/

[* Fieldsin the second 32-byte wire event: */

/**/

xv = (deviceValuator *) ++xev;

Xv->type = DeviceValuator; [* event type of second event */
xv->deviceid = dev->id; [* id of thisdevice */
Xv->num_valuators = 2; /* 2 valuatorsbeing sent */
xv->first_valuator = 0; /* first valuator being sent */
Xv->device state =0; /* will befilledinby DIX */
xv->valuator0 = x; [* first axis of thisdevice */
Xv->vauatorl = y; [* second axis of this device */

Up to six axes can be reported in the deviceVauator event. If the device is reporting more than 6 axes,
additional pairs of DeviceMotionNotify and DeviceValuator events should be sent, with the first_valuator
field set correctly.

15

X Input Extension Porting Document X11, Release 5

5.4. Device Proximity Events

Some input devices that report absolute positional information, such as graphics tablets and touchscreens,
may report proximity events. Proximityln events are generated when a pointing device like a stylus, or in
the case of atouchscreen, the user’s finger, comes into close proximity with the surface of the input device.

ProximityOut events are generated when the stylus or finger leaves the proximity of the input devices sur-
face.

Proximity events contain almost the same information as button events. The event type is Proximityln or
ProximityOut, and there is no detail information.

16

X Input Extension Porting Document X11, Release 5

17

